Dice/Limbo Martingale Chance Calculator
With a balance of 0.00200000, a base bet of 0.00000001, a 49.50% chance and an increase on loss of 100.00%, you can support a loss streak of 17 rolls before bust. You have a 0.00% chance of bust.
For your 49.50% chance (2.00× payout) you have to use a minimum increase on loss of 100.00% to recover your losses on every win.
Note: These figures are purely informative figures, just the probabilities. In any case, we are not responsible for your losses. Using the Martingale system can be very dangerous and even if you think a certain loss streak will never happen: It will. Only gamble what you can afford to lose.
Loss | Bet Amount | Total Bet | Profit | Net Profit | Probability | Odds |
---|---|---|---|---|---|---|
1 | 0.00000001 | 0.00000001 | 0.00000001 | 0.00000001 | 50.50% | 1:1.9802 |
2 | 0.00000002 | 0.00000003 | 0.00000002 | 0.00000001 | 25.5025% | 1:3.9212 |
3 | 0.00000004 | 0.00000007 | 0.00000004 | 0.00000001 | 12.8787625% | 1:7.7647 |
4 | 0.00000008 | 0.00000015 | 0.00000008 | 0.00000001 | 6.50377506% | 1:15.3757 |
5 | 0.00000016 | 0.00000031 | 0.00000016 | 0.00000001 | 3.28440641% | 1:30.4469 |
6 | 0.00000032 | 0.00000063 | 0.00000032 | 0.00000001 | 1.65862524% | 1:60.2909 |
7 | 0.00000064 | 0.00000127 | 0.00000064 | 0.00000001 | 0.83760574% | 1:119.3879 |
8 | 0.00000128 | 0.00000255 | 0.00000128 | 0.00000001 | 0.4229909% | 1:236.4117 |
9 | 0.00000256 | 0.00000511 | 0.00000256 | 0.00000001 | 0.2136104% | 1:468.142 |
10 | 0.00000512 | 0.00001023 | 0.00000512 | 0.00000001 | 0.10787325% | 1:927.0138 |
11 | 0.00001024 | 0.00002047 | 0.00001024 | 0.00000001 | 0.05447599% | 1:1.8357K |
12 | 0.00002048 | 0.00004095 | 0.00002048 | 0.00000001 | 0.02751038% | 1:3.635K |
13 | 0.00004096 | 0.00008191 | 0.00004096 | 0.00000001 | 0.01389274% | 1:7.198K |
14 | 0.00008192 | 0.00016383 | 0.00008192 | 0.00000001 | 0.00701583% | 1:14.2535K |
15 | 0.00016384 | 0.00032767 | 0.00016384 | 0.00000001 | 0.003543% | 1:28.2247K |
16 | 0.00032768 | 0.00065535 | 0.00032768 | 0.00000001 | 0.00178921% | 1:55.8905K |
17 | 0.00065536 | 0.00131071 | 0.00065536 | 0.00000001 | 0.00090355% | 1:110.6742K |
18 | 0.00131072 | 0.00262143 | 0.00131072 | 0.00000001 | 0.00045629% | 1:219.1569K |
19 | 0.00262144 | 0.00524287 | 0.00262144 | 0.00000001 | 0.00023043% | 1:433.9741K |
20 | 0.00524288 | 0.01048575 | 0.00524288 | 0.00000001 | 0.00011637% | 1:859.3547K |
21 | 0.01048576 | 0.02097151 | 0.01048576 | 0.00000001 | 0.00005877% | 1:1.7017M |
22 | 0.02097152 | 0.04194303 | 0.02097152 | 0.00000001 | 0.00002968% | 1:3.3697M |
23 | 0.04194304 | 0.08388607 | 0.04194304 | 0.00000001 | 0.00001499% | 1:6.6726M |
24 | 0.08388608 | 0.16777215 | 0.08388608 | 0.00000001 | 0.00000757% | 1:13.2132M |
25 | 0.16777216 | 0.33554431 | 0.16777216 | 0.00000001 | 0.00000382% | 1:26.1647M |
26 | 0.33554432 | 0.6710886300000001 | 0.33554432 | 0.0000000099999999 | 0.00000193% | 1:51.8113M |